Nutritional Regulation of Insulin-Like Growth Factor-1
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Several lines of evidence indicate that in the human, insulin-like growth factor-l (IGF-1} is nutritionally regulated. Both energy
and protein availability are required for maintenance of IGF-1. Measurements of serum IGF-I constitute a sensitive means for
monitoring the response of acutely ill patients to nutritional intervention. Serum IGF-1 may also serve as a marker for evaluation
of nutritional status. Our findings and those of others in animal models suggest that nutrients influence synthesis and action of
IGF-l and its binding proteins {IGFBPs) at multiple levels. In fasting, liver growth hormone {(GH} binding is decreased, providing
one explanation for decreased IGF-I. In protein restriction, GH receptors are maintained, but there is evidence for a postreceptor
defects. The latter results from pretranslational and translational defects. Amino acid availability to the hepatocytes is essential
for IGF-1 gene expression. Protein malnutrition not only decreases IGF-1 production rate, but also enhances its serum clearance
and degradation. Finally, there is evidence for selective organ resistance to the growth-promoting effects of IGF-l in

protein-restricted rats.
Copyright © 1995 by W.B. Saunders Company

ROWTH IS A COMPLEX process governed by many
hormonal interactions. It is also dependent on ad-
equate nutrient intake. Among the many hormones in-
volved in the growth process, growth hormone (GH) plays a
central role. In the circulation, GH is bound in part to a
GH-binding protein (GHBP) that corresponds to the extra-
celtular portion of the GH receptor.! GH exerts many of its
growth-promoting actions indirectly by binding to specific
receptors in many tissues and stimulating the production of
insulin-like growth factor-I (IGF-I).? Previously referred to
as somatomedin-C, IGF-I is a single-chain polypeptide
composed of 67 amino acid residues and structurally
related to proinsulin.®> IGF-I is produced in most organs,
but the liver is the major source of the circulating pep-
tide.>1® The highest concentrations of IGF-I are found in
blood.! IGF-1 promotes the growth of most cell types and,
together with other growth factors, induces cellular differ-
entiation and differentiated functions of specialized cells.1%!3
The biological effects of IGF-I are mediated by specific
high-affinity receptors (type I IGF receptors) that have
structural homology with the insulin receptor. The ubiquity
of sites of IGF-I production and of its receptor has led to
the concept that it acts by autocrine/paracrine mechanisms
in addition to a classic endocrine action.}+16
In serum and most body fluids, IGF-I is bound to
high-affinity binding proteins (IGFBPs). Most IGF-I circu-
lates as a 150-kd complex consisting of IGF-I, IGFBP-3 (47
to 53 kd), and an acid-labile subunit (84 to 86 kd). The
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remainder of bound IGF-I circulates as a 30- to 40-kd
complex (IGF-I bound to IGFBP-1, -2, or -4). Each of these
binding proteins is regulated differently, and each is be-
lieved to perform different functions.!-2!

The major hormonal regulator of circulating IGF-I is
GH.2 Serum IGF-I levels reflect GH status, being low in
GH-deficient children and elevated in patients with acro-
megaly. Insulin also plays a role in regulation of IGF-I. In
growth retardation associated with poorly controlled diabe-
tes (Mauriac’s syndrome), serum IGF-1 concentrations are
reduced despite elevated GH levels.? Studies in rats made
diabetic with streptozotocin have shown that the GH
resistance that occurs in insulinopenic animals is due to a
GH postreceptor defect. 22

Based on clinical observations and experimental data
from animals, the concept has emerged that food intake
and nutritional status play an important role in the control
of IGF-I. In this article, we will summarize the data on
nutritional control of IGF-I in the human. We will then
review our experimental studies on the mechanisms by
which nutrients control both the production and anabolic
actions of IGF-I.

CONTROL OF IGF-I BY NUTRIENTS: CLINICAL STUDIES

Food intake and nutritional status are major regulators
of IGF-1. Thus, chronic undernutrition leads to reduced
serum IGF-1. Early studies have shown that bioactive
somatomedin in serum is decreased in children with kwashi-
orkor, and this reduction is accompanied by decreased
serum albumin.??” Reports from Hintz et al?’ and Smith et
al?® indicate that low somatomedin bioactivity is also
present in children with marasmus, but is independent of
changes in serum albumin. Studies using radioimmunoas-
says also indicate that serum IGF-I is reduced in patients
with protein-calorie malnutrition.”® Decreased serum IGF-1
values are ot restricted to classic forims of malnutrition,
since conditions such as anorexia nervosa, severe inflamma-
tory bowel disease, or celiac disease are often associated
with reduced serum IGF-I. In general, the magnitude of
IGF-1 reduction relates to the severity of the nutritional
insult, and IGF-T levels consistently increase with nutri-
tional rehabilitation.3*32 In human immunodeficiency virus—
infected patients, a decline of serum IGF-I is also present
and correlates with serum albumin and body-cell mass. >
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NUTRITIONAL REGULATION OF IGF-I

In adults, IGF-I values decline within 24 hours of the
start of fasting, reach 10% to 15% of prefast values by 10
days, and promptly return toward normal with refeeding.
Changes in nitrogen balance parallel changes in IGF-I1.3
Serum IGF-I concentrations appear to be a good indicator
of directional changes in nitrogen balance.®® Both energy
and protein are important in regulation of IGF-1 because
each is essential for restoration of serum IGF-I after
fasting.’S A threshold amount of energy ( ~ 12 kcal/kg/24 h)
is essential for IGF-I recovery after fasting, and the quality
of dietary protein (content of essential amino acids) also
regulates IGF-1.%6:37

Serum IGF-I measurements may offer a more sensitive
index of short-term changes in nutritional status than other
markers. Indeed, in malnourished adults receiving nutri-
tional support for 10 to 16 days, serum IGF-I increases
rapidly, while serum transferrin, prealbumin, or retinol-
binding protein exhibit only minimal changes.® Therefore,
IGF-I appears to be a clinically useful indicator of nutri-
tional status. Unterman et al*® reported that serum IGF-I is
effectively reduced to a mean of 38% of control values in 31
hospitalized malnourished patients. Furthermore, IGF-I
values were more informative than anthropometric and
classic laboratory indices of nutritional status. However,
other studies reporting on the use of IGF-I measurement to
screen for malnutrition in large groups of normal individu-
als have shown no positive correlation between serum
IGF-1 and dietary intake or anthropometric indices.*0:4
This may be due in part to the low prevalence of malnour-
ished subjects in the study group. Sullivan and Carter*? have
shown recently that serum IGF-I may be a clinically useful
marker for protein-energy undernutrition among metaboli-
cally stable, hospitalized elderly patients. Furthermore, in
these patients, low IGF-I levels appeared as a strong
predictor of life-threatening complications.

Inversely, excessive food intake may cause a small stimu-
lation of serum IGF-I. Thus, overfeeding a normal-weight
woman (1,200 to 1,600 kcal/d) caused a 19% increase of
serum IGF-I by day 14.4 In contrast, in obesity serum
IGF-I concentrations are moderately decreased and corre-
late negatively with the abdominal fat mass.*4> This may be
due in part to the reduced GH levels in obese subjects.

MALNUTRITION AND GH RESISTANCE

In severe protein restriction (kwashiorkor) or protein-
energy deprivation (marasmus), growth retardation is asso-
ciated with low serum IGF-I levels, despite elevated or
normal GH serum concentrations.26272° In man, the de-
crease of IGF-I during fasting is associated with elevated
serum GH.* Moreover, the IGF-I response to GH is
blunted in GH-deficient patients subjected to fasting.*’ In
rats in which serum somatomedin (IGF) is reduced by
fasting, pharmacological doses of GH fail to increase
somatomedin activity.”® Taken together, these data indicate
that restriction in food intake leads to GH resistance.

ROLE OF GH RECEPTOR AND POSTRECEPTOR DEFECTS

The hypothesis was tested that the GH resistance in
fasting results from a loss of GH receptors.**-52 To this end,
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6-week-old female rats were fasted for 3 days and then
refed a standard diet. After 1 and 3 days of fasting, serum
IGF-T had declined by 68% and 87%, respectively*»> (Fig
1). After 4 days of refeeding, IGF-I had returned to the
initial prefast values. These changes in IGF-I were paral-
leled by changes in the number of hepatic GH-binding sites,
determined with [1%*]]-labeled bovine GH. However, there
were no changes in the affinity constants of the binding.
Further studies by Straus and Takemoto>? showed that GH
receptor mRNA abundance in the liver also declines during
fasting and responds to refeeding. In fasted rats, circulating
GHBP was decreased in parallel with liver GH receptors
and serum IGF-I. In humans also, GHBP levels decrease in
parallel with serum IGF-I concentrations during severe
undernutrition, such as anorexia nervosa.’ This suggests
that in humans also, reduced liver GH-binding capacity may
impair GH responsiveness during extreme dietary restric-
tion.

In protein-restricted rats, the role of liver GH receptors
in the decline of serum IGF-I is more questionable than in
fasting. We have observed that during the first 12 and 24
hours of protein restriction in prepubertal rats, serum
IGF-Iwas decreased by 58% and 66%, respectively, whereas
liver GH binding was reduced by only 15% to 20%.
Administration of rat GH did not prevent the effects of
protein restriction on serum IGF-1.% In 3- to 4-week-old
prepubertal rats, feeding a low-protein diet (5% casein) for
1 week caused an 80% to 90% reduction in serum IGF-I as
compared with levels in control rats fed 15% casein. At the
same time, GH binding by liver was either unchanged
(3-week-old rats) or decreased by only 30% to 40% (4-week-
old rats).” The slight decrease of liver somatogenic recep-
tors after 1 week of a low-protein diet could be prevented
by continuous infusion of GH. In contrast, in these GH-
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Fig 1. Effect of fasting and refeeding on rat serum IGF-l {O) and
liver GH-binding sites (l). Data are expressed as the mean vaiue for
controls on the first day of the study {(day 0]. Reproduced by
permission of the J. Endocrinol Ltd, after adaptation.*®
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Fig 2. Effect of 1 week of dietary protein restriction {[P5] 5%
protein diet) on liver GH-binding sites {A) and serum IGF-I concentra-
tions (B) in 4-week-old rats. P5 rats were either untreated {control) or
infused for 1 week with rat GH 200 pg/d using an osmotic minipump
{P5 GH 200 pg). The P15 group received a normal-protein diet (15%
protein). Total liver GH-binding sites were determined on liver homog-
enates treated with 4 mol/L MgCl, to remove the endogenous bound
hormone. **P < .01 v P5 control group. bGH, bovine GH; SB,
specifically bound radioactivity; T, total radioactivity. Reprinted with
permission.5® @ The Endocrine Society.

treated animals, IGF-I remained low despite normal liver
GH-binding capacity and elevated GH levels’¢ (Fig 2). The
possibility of a postreceptor defect was evaluated by compar-
ing the serum IGF-I response of protein-restricted, hypophy-
sectomized rats with that of normal-fed rats following a
single injection of GH. In normal-fed animals, bovine GH
produced a dose-dependent increase in serum IGF-I,
whereas in rats fed a low-protein diet, the IGF-I response
to bovine GH was severely blunted despite normal liver GH
binding.>’ Finally, studies performed on hepatocytes iso-
lated from 8-week-old, protein-restricted rats showed that
reduced IGF-I occurred in the presence of normal numbers
of GH receptors on the surface of the cells.”® We therefore
conclude that the GH resistance in protein restriction is
due primarily to defects distal to the binding of GH with its
receptor.
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ROLE OF INSULIN AND AMINO ACID AVAILABILITY

Insulin levels are reduced by ingestion of a low-protein
dict. We therefore investigated whether this factor may play
a role in the reduction of IGF-I during dietary protein
restriction. Using a model of rats made diabetic with
streptozotocin, treated with insulin, and then submitted to
a low- or normal-protein diet, we observed that dietary
protein restriction exerts its effects on IGF-I independently
of insulin® (Fig 3). Thus, protein restriction by itself is the
major cause of reduced serum IGF-I in this model. Support
for a primary role of amino acid availability in the control of
IGF-I gene expression has been obtained in primary cul-
tures of rat hepatocytes.®® When the hepatocytes are
incubated with a medium containing only 20% of the amino
acid concentration of normal serum, IGF-I mRNA abun-
dance decreases to 56% of control values after 24 hours;
controls are cells incubated with a medium containing
normal amino acid concentrations. Other reports have
suggested a major role of tryptophan in the maintenance of
IGF-I mRNA in hepatocytes in culture.61-62

MOLECULAR MECHANISMS INVOLVED IN THE GH
POSTRECEPTOR DEFECT CAUSED BY PROTEIN
RESTRICTION

We have investigated whether pretranslational and/or
translational defects might contribute to the nutritionally
induced decrease in serum IGF-I. To this end, we deter-
mined by Northern blot analysis the IGF-I mRNA levels in
liver tissue of prepubertal rats fed a low-protein (5%
casein) or normal-protein (15% casein) isocaloric diet for 1
week. Dietary protein restriction resulted in a 40% to 60%
decrease in the abundance of all IGF-I mRNA transcripts
(7.5,4.7, 1.5 t0 1.9, and 0.9 to 1.2 kb) in comparison to the
abundance in normal-fed rats. The 7.5-kb transcript showed
a tendency to be reduced more than other transcripts®® (Fig
4). Reduced liver IGF-I mRNA together with low serum
IGF-I levels have also been observed in fasting or neonatal
food restriction.»64% Protein restriction or fasting also
cause reduction in IGF-I1 mRNA in nonhepatic tissues such
as kidney, muscle, gut, and brain.?”%® Some studies suggest
that nutritional intake may regulate the rate of IGF-I gene
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Fig 4. Northern blot analysis of liver IGF-l mRNA in 3 normally fed
{P15) and 3 protein-restricted (P5) 4-week-old rats. Protein-restricted
diet was given for 1 week. Samples of liver RNA {20 pg) were loaded in
each well. The blot was hybridized with a rat exon 3-specific IGF-

RNA probe. The signal obtained with hybridizing by a chicken B-actin
cDNA probe was equivalent in both groups.
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transcription, but it is possible that increased mRNA
instability is also a mechanism for decreased mRNA levels.

We also investigated the effects of exogenous GH admin-
istration on liver IGF-I mRNA levels in prepubertal protein-
restricted rats. We found that high doses of GH normalized
liver IGF-I mRNA but not liver or serum IGF-I concentra-
tions.®* Another series of experiments were conducted to
determine the effects of protein deprivation on the IGF-I
gene response to acute exposure to GH. Prepubertal
hypophysectomized rats were subjected to a low- or normal-
protein diet for 1 week, and were thereafter injected with a
single dose of rat GH. Liver IGF-I mRNA levels were
determined at various time intervals together with serum
IGF-Ilevels. GH injection produced a comparable surge of
liver IGF-I mRNA in both dietary groups, but failed to
increase serum IGF-I normally in the group fed low levels
of protein®® (Figs 5 and 6). These data show that the
machinery involved in transcription of the liver IGF-I gene
is intact in protein-restricted rats, because these animals
retain the ability to muster normal IGF-I mRNA responses
to high doses of exogenous GH. Furthermore, the discrep-
ancy between normal liver IGF-I mRNA abundance and
low serum and liver IGF-I peptide concentrations suggests
that translational stalling of IGF-I mRNA is at least
partially involved in the low serum IGF-1 concentrations

LIVER IGF-l mRNA RESPONSE TO GH IN P15 AND P5s HYPOX RATS
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Fig 5. (A and B) Northern blot analysis of liver IGF-l mRNA in protein-restricted (P5) and normally fed (P15) hypophysectomized rats at

increasing times after a single GH injection {rat GH 200 ug/ 100 g body weight at time 0). Each lane represents mRNA from a liver pool of 3tc 6
rats. Samples of liver poly(A)* RNA (10 ng) were loaded in each well. The blot was hybridized with a rat exon 3-specific IGF-I RNA probe (A) or a
chicken B-actin cDNA probe (B). (C) Time course of total IGF-l mRNA in protein-restricted (®) and normally fed (O) hypophysectomized rats after a
single GH injection. Each value represents the mean of 6 different blots run with a single RNA preparation from a liver pool, and is expressed in
arbitrary densitometric units by assigning hepatic RNA pooled from untreated P15 rats a value of 1. Reprinted with permission.® o The Endocrine
Society.
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Fig 6. Serum IGF-I concentrations in protein-restricted (®) and
normally fed (O) hypophysectomized rats after a single GH injection
(rat GH 200 g/ 100 g body weight). Each value represents the mean +
SEM of 3 to 6 rats. *P < .05, **P < .01, ***P < .001. Reprinted with
permission.® The Endocrine Society.

during dietary protein restriction. Studies on the nature of
this transiational defect show that dietary protein restric-
tion does not affect binding of IGF-I mRNA to polysomes,
one of the mechanisms involved in initiation of IGF-1
mRNA translation.®

EFFECTS OF PROTEIN RESTRICTION ON SERUM
CLEARANCE AND DEGRADATION OF IGF-I

The effects of protein restriction on serum IGF-I clear-
ance and degradation were measured after a bolus injection
of ['¥I]-labeled IGF-1.7 Protein restriction accelerated the
rate of serum clearance of IGF-I, as well as the rate of
peptide degradation. This could be explained by the fact
that in protein-restricted rats, IGF-I binds preferentially to
the 40-kd IGFBP complex, which has a shorter half-life
than the 150-kd complex. It was also found that endogenous
IGF-I production, calculated from serum levels and clear-
ance data, was reduced by 29% during protein restriction.
This was consistent with the previous experiments showing
reduced IGF-I mRNA liver content, translational stalling,
and low tissue and serum IGF-I levels in protein-restricted
rats.

EFFECTS OF DIETARY PROTEIN RESTRICTION ON THE
GROWTH-PROMOTING ACTIONS OF IGF-|

We evaluated whether dietary protein restriction in
prepubertal rats could impair the anabolic actions of IGF-1.
Four-week-old rats fed a low-protein diet (5% casein) were
infused with recombinant human IGF-I (300 ng/d) or rat
GH (200 p.g/100 g body weight/d) by osmotic minipump for
1 week.™ Despite normalization of serum IGF-I by IGF-I
infusion, carcass growth was not stimulated (Fig 7). In
contrast, growth of the spleen and kidney was enhanced
(+45% and +28%, respectively). Serum IGFBP-3 is de-
creased by 34% in protein-restricted animals, and is re-
stored to normal by IGF-I infusion. Contrary to the
selective effects of IGF-I on the growth of protein-
restricted rats, well-nourished hypophysectomized rats in-
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fused with recombinant human IGF-I (150 pg/d) showed a
significant growth response, including carcass and organ
growth and normalization of IGFBP-3 values. The latter
indicates that our IGF-I preparation and mode of delivery
were effective. In further experiments, protein-restricted
rats received a combined infusion of IGF-I and GH. Even
in this condition, no stimulation of carcass growth was
observed.” These results agree with the report by Philipps
et al™ showing that protein-energy deprivation in neonatal
rats blocks IGF-I effects on somatic growth. Other observa-
tions showed that the body weight loss caused by fasting can
be partially blunted by IGF-I treatment in animals.”7? The
difference of the severity between the two nutritional
insults (malnutrition v fasting), specifically considering
body weight loss and intensity of the catabolism, might
explain the divergence of the results. We conclude from
these studies that (1) dietary protein restriction causes
relative, organ-specific resistance to the growth-promoting
properties of exogenous IGF-I, and this resistance might
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Fig 7. (A) Body weight, {B) tail length, and (C} tibial epiphyseal

width in normal protein-fed rats {P15), protein-restricted rats {P5),
protein-restricted rats infused with rat GH (200 pg/100 g/d, P5 +
GH), and protein-restricted rats infused with recombinant human
IGF-1 (300 pg/d, P5 + IGF-1). The treatments were 1 week in duration.
Values are shown as the mean + SEM. For these indices of growth,
P15 animals were significantly greater than P5 animals (P < .01).
Reprinted with permission.”" The Endocrine Society.
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participate in the growth arrest that accompanies protein
restriction; (2) IGF-I mediates the stimulatory effects of
GH on IGFBP-3 synthesis; and (3) exogenous GH does not
restore normal responsiveness to exogenous IGF-I in pro-
tein-restricted rats.

CONCLUSIONS

IGF-1 is GH-dependent, but nutritional factors also play
an important role in its regulation. In this review, we have
presented various aspects of nutritional regulation of IGF-I
in humans. We suggest that IGF-I measurements in serum
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have a role in the assessment of nutritional status of
patients. In animal studies, the low IGF-I levels occurring
during dietary restriction are associated with GH resis-
tance. We have investigated the mechanisms underlying
this resistance in fasted and protein-deprived rats. Our
studies show that nutrient availability regulates GH action
at multiple levels: liver GH receptor regulation, GH postre-
ceptor events, and IGF-I gene expression. Protein depriva-
tion also accelerates IGF-I clearance, modifies IGF-I inter-
action with binding proteins, and attenuates expression of
biological actions of IGF-I.
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